Phosphorylation of cAMP-specific PDE4A5 (phosphodiesterase-4A5) by MK2 (MAPKAPK2) attenuates its activation through protein kinase A phosphorylation.
نویسندگان
چکیده
cAMP-specific PDE (phosphodiesterase) 4 isoforms underpin compartmentalized cAMP signalling in mammalian cells through targeting to specific signalling complexes. Their importance is apparent as PDE4 selective inhibitors exert profound anti-inflammatory effects and act as cognitive enhancers. The p38 MAPK (mitogen-activated protein kinase) signalling cascade is a key signal transduction pathway involved in the control of cellular immune, inflammatory and stress responses. In the present study, we show that PDE4A5 is phosphorylated at Ser147, within the regulatory UCR1 (ultraconserved region 1) domain conserved among PDE4 long isoforms, by MK2 (MAPK-activated protein kinase 2, also called MAPKAPK2). Phosphorylation by MK2, although not altering PDE4A5 activity, markedly attenuates PDE4A5 activation through phosphorylation by protein kinase A. This modification confers the amplification of intracellular cAMP accumulation in response to adenylate cyclase activation by attenuating a major desensitization system to cAMP. Such reprogramming of cAMP accumulation is recapitulated in wild-type primary macrophages, but not MK2/3-null macrophages. Phosphorylation by MK2 also triggers a conformational change in PDE4A5 that attenuates PDE4A5 interaction with proteins whose binding involves UCR2, such as DISC1 (disrupted in schizophrenia 1) and AIP (aryl hydrocarbon receptor-interacting protein), but not the UCR2-independent interacting scaffold protein β-arrestin. Long PDE4 isoforms thus provide a novel node for cross-talk between the cAMP and p38 MAPK signalling systems at the level of MK2.
منابع مشابه
Identification of a multifunctional docking site on the catalytic unit of phosphodiesterase-4 (PDE4) that is utilised by multiple interaction partners
Cyclic AMP (cAMP)-specific phosphodiesterase-4 (PDE4) enzymes underpin compartmentalised cAMP signalling by localising to distinct signalling complexes. PDE4 long isoforms can be phosphorylated by mitogen-activated protein kinase-activated protein kinase 2 (MK2), which attenuates activation of such enzymes through their phosphorylation by protein kinase A. Here we show that MK2 interacts direct...
متن کاملDistinct roles of MK2 and MK5 in cAMP/PKA- and stress/p38-induced heat shock protein 27 phosphorylation
Background: Classical mammalian mitogen-activated protein kinase (MAPK) pathways consist of a cascade of three successive phosphorylation events resulting in the phosphorylation of a variety of substrates, including another class of protein kinases referred to as MAPK-activating protein kinases (MAPKAPKs). The MAPKAPKs MK2, MK3 and MK5 are closely related, but MK2 and MK3 are the major downstre...
متن کاملDistinct roles of MK2 and MK5 in cAMP/PKA- and stress/p38MAPK-induced heat shock protein 27 phosphorylation
BACKGROUND Classical mammalian mitogen-activated protein kinase (MAPK) pathways consist of a cascade of three successive phosphorylation events resulting in the phosphorylation of a variety of substrates, including another class of protein kinases referred to as MAPK-activating protein kinases (MAPKAPKs). The MAPKAPKs MK2, MK3 and MK5 are closely related, but MK2 and MK3 are the major downstrea...
متن کاملThe stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation
Autophagy is a fundamental adaptive response to amino acid starvation orchestrated by conserved gene products, the autophagy (ATG) proteins. However, the cellular cues that activate the function of ATG proteins during amino acid starvation are incompletely understood. Here we show that two related stress-responsive kinases, members of the p38 mitogen-activated protein kinase (MAPK) signaling pa...
متن کاملSelective activation of rolipram-sensitive, cAMP-specific phosphodiesterase isoforms by phosphatidic acid.
In rat thymic lymphocytes, accumulation of phosphatidic acid (PA) occurs at the same time as decrease in cAMP levels and activation of a cAMP-specific phosphodiesterase (PDE) [type 4, EC 3.1.4.17 (PDE4)]. We investigated the nature of the PDE activated by PA and the mechanism of activation by using recombinant cAMP-specific PDE4 isoforms derived from three different genes (PDE4A, PDE4B, and PDE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 435 3 شماره
صفحات -
تاریخ انتشار 2011